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uranium is to join together two orthouranate layers 
or two orthouranate chains by means of shared Oi 
atoms. If this suggestion proves to be correct, the di- 
orthouranates should be designated as R~UgOa04, cor- 
responding to the presence of 1½ 0i and 2 0ii atoms 
per uranium. According to this guess as to the consti- 
tution of the di-orthouranates, each uranium forms two 
primary U-OI bonds, but there are no uranyl groups 
(UOs). Instead, two uranyl groups are joined together 
to form configurations 0~-U-0~-U-0~ with the in- 
finite layers or chains normal to this axis. 

Anhydrous U0a is known to exist in several crystal- 
line forms, but structural information has been re- 
ported for only one of them. The hexagonal form of 
UO3 is said (Zachariasen, 1948b) to have a very simple 
structure with one molecule per unit cell with al = 
3.971 /~, aa = 4-168 ~. Positions were assigned to the 
oxygen atoms purely on the basis of steric considera- 
tions as follows: 

1 U  in (0,0,0),  l O t  in (0,0,½), 2 0 n  in (½,~,z) 

with z ~ 0.17. I t  is readily seen that  the proposed 
structure can be described as an infinite stack of the 
hexagonal layers first observed in the CaUO~02 struc- 
ture. These layers are stacked directly on top of one 

another in such a way that  the 0t  atoms are shared. 
The formula, accordingly, should be written U00s .  
There are no uranyl groups; instead uranyl groups are 
joined together to form an endless linear chain 
-0 I -U-0~-U-0I - .  
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A test was made to see how large a fraction of the hO1 reflexions of horse methaemoglobin obeyed 
sign relations of the type : S(hO1) = S(h'Ol')S(h ÷ h'pOrl ÷ l'). Thirty sign relations were found between 
the 16 strongest reflexions chosen for the test; 22 of these held and 8 failed. A further 56 sign 
relations were found between any two strong and any one medium reflexion; 30 of these held and 
26 failed. The results suggest that direct mathematical methods are not likely to give correct results 
in the structure analysis of proteins, except perhaps in very favourable cases. 

There has been some debate whether direct mathemati- 
cal methods, such as inequalities (Harker & Kasper, 
1948) or sign relations (Sayre, 1952; Cochran, 1952; 
Zachariasen, 1952), could be usefully applied to the 
structure analysis of proteins. The recent determina- 
tion of the signs of the inner 100 hOl reflexions of horse 
methaemoglobin by the isomorphous replacement 
method (Green, Ingram & Perutz, 1954) provides an 
opportunity for testing the validity of such procedures. 
The unitary structure factors of haemoglobin are too 
small to apply inequalities. However, Cochran (1952) 

has shown that  this is not necessary, because whenever 
inequalities give a relationship between three large 
structure factors it is of the form 

S(hkl) = S (h ' kT )S (h÷h ' , k+k ' , l+ l ' ) .  (1) 

The first application of this type of sign relation to 
proteins is due to Kendrew (1952). He treated a 
particularly favourable case: a projection of myo- 
globin in which the polypeptide chains are probably 
viewed end-on, simulating in appearance a structure 
with only a few well-resolved atoms. Such simple 
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projections, however, are rare. I t  was thought tha t  
a general measure of the usefulness of direct mathemat-  
ical methods, for projections showing no specially 
favourable features, might be obtained by choosing 
the strongest among the reflexions of known sign in 
horse haemoglobin and examining the extent to which 
equation (1) is obeyed between them. If the signs of 
the strongest reflexions from a protein crystal could 
be derived by the use of sign relations, then a Fourier 
projection could be calculated with these reflexions 
as terms. Such a projection might conceivably show 
some of the major features of the correct structure, 
and these features might lead to the determination of 
further signs. On the other hand, if the number of 
sign relations obeyed proved to be insufficient, then 
no a t tempt  to solve the structure by direct mathemat-  
ical methods is likely to be successful. 

In  the present work we have taken the 16 strongest 
among the hO1 reflexions of known sign (Table 1). 

Table 1 

hkl Sign  2 '  U l [ F ( 0 0 0 ) = 1 6 , 4 5 0  ] U ~ [ F ( 0 0 0 ) = 7 2 , 0 0 0 ]  

001 + 2650 0.162 0.037 
002 - -  1190 0.072 0.017 
006 + 1280 0-078 0.018 
205 + 1060 0.065 0.015 
202 - -  1070 0.065 0.015 
402 - -  1220 0.074 0.017 
400 ~- 1020 0.062 0-014 
602 - -  1930 0-0117 0.027 
607 -}- 1030 0.062 0 .014 
lO,O,1 - -  1020 0.062 0 .014 
10,0,0 - -  1190 0-072 0.015 
12,0,1 -}- 1400 0.085 0.019 
12,0,5 -b 1130 0.069 0 .016 
12,0,7 ~- 1120 0.069 0 .016 
14,0,5 - -  1440 0.088 0 .020 
16,0,7 - -  1090 0.066 0.015 

Their uni tary structure factors were calculated on the 
basis of two alternative assumptions. For U 1 the 
value of F(000) was taken as the difference between 
the number of electrons contained in two haemoglobin 
molecules and in an equivalent volume of water (for 
the justification of this procedure see Bragg & Perutz, 
1954). For U~ the value of F(000) was taken as the 
total number of electrons contained in two haemo- 
globin molecules, but omitting the electrons in the 
liquid of crystallization which may be regarded as 
uniform at the resolution considered here. 

a ' =  (~9)½ = 600 for the 100 reflexlons of known 
sign. For the 16 strongest reflexions (~V~) ½ -- 1360 = 
2-3a'. Their values range from 1.7 to 4.4a'. Altogether, 
30 sign relations were found to apply between the 16 
reflexions; 22 of these agreed with the experimentally 
determined signs, and 8 failed. Thus the fraction 
which held was 75%. 

We now took any two reflexions hO1 and h'Ol', 
belonging to the original set of 16, and chose any 
reflexion of medium intensity for the third term 
h+h',O,l+l'. In this way a further 56 sign relations 

were found of which 30 (or 54%) proved consistent 
with the experimentally determined signs. 

I t  is surprising, in view of the complexity of the 
structure, to find as many as 75 % of the sign relations 
holding, even among the strongest reflexions. This 
result can hardly be fortuitous, as the following 
argument shows. Suppose the chances of any sign 
relation holding are even. If the total  number of sign 
relations is n, and the number found to hold good is r, 
then the probabili ty of this happening is 

n! n= for n = 3 0  and r - - 2 2 .  
P = r ! ( n - r ) !  157 

The probabili ty of there being exactly equal numbers 
of consistent and inconsistent relations is {. Thus the 
consistency of 22 out of 30 in haemoglobin must be 
considered significant. 

Cochran & Douglas (1954) have devised a method of 
solving crystal structures directly with the help of 
such sign relations, using an electronic calculator to 
work out the correct combination of signs. They find 
that  more than 90?/0 of the sign relations among the 
strong and medium reflexions have to hold before 
their method becomes practicable, since otherwise the 
calculator works out a very large number of equally 
probable sign combinations. If this were done in a 
protein there would be few safe criteria for choosing 
the right one among them. Thus even if the fraction 
of sign relations holding among the strongest reflexions 
in haemoglobin is large, considering the complexity, 
it is nevertheless too small to offer any prospects tha t  
direct mathematical  methods might be useful in the 
solution of its structure. Moreover, the fraction of sign 
relations holding between two strong and one medium 
reflexion is hardly greater than one-half. This failure 
does not necessarily imply tha t  sign relations might 
not be useful in special cases, such as Kendrew's 
myoglobin projection mentioned earlier, but before any 
reliance can be placed on the results of a direct ap- 
proach it would be necessary to establish the required 
simplicity of the projection by independent methods, 
such as three-dimensional Patterson analysis. 

One of us (V. S.) is indebted to the Consiglio Nazio- 
nale delle Ricerche of I ta ly  for a grant enabling him 
to work at Cambridge. 
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